В настоящее время неизвестно, как воспроизвести человеческое обоняние техническими средствами. Однако некоторые газы можно обнаруживать [7—9]. Так, при соприкосновении сгораемой смеси газа и воздуха с некоторыми катализаторами, например платиной или палладием, выделяется тепло и изменяется электрическое сопротивление катализатора, что можно обнаруживать прямым измерением. Подобные детекторы, безусловно, очень важны для предотвращения пожара и взрыва. Кислород можно обнаруживать, используя его парамагнитные свойства, а некоторые газы — используя их теплопроводность, в устройстве, называемом термокондуктометрическим детектором. Для обнаружения различных газов можно использовать также инфракрасное поглощение. Водяные пары обнаруживаются гигрометрами различных типов. Тем не менее ни один из этих методов не является идеальным для применения в роботе общего назначения. Можно лишь надеяться, что будущие исследования приведут к появлению более совершенных детекторов запаха.
Человеческий вкус также является ощущением, которое мы еще не можем воспроизвести [35]. Лучше всего использовать для этих целей измерители pH, однако еще не существует метода, пригодного для широкого применения в роботе.
Человек способен ощущать и воспринимать четыре основных вкусовых качества (сладкое, горькое, кислое и соленое), которыми в разной степени наделены различные вещества.
Наибольший объем вкусовой и обонятельной информации поступает при небольшой вероятности конкретного вкусового качества или запаха. Хорошо замечается то, что незнакомо.
Райт [32, 33] считает, что нервная система животного обнаруживает запахи, улавливая колебания молекул в дальней инфракрасной области.
Газы обладают способностью изменять цвет различных химических веществ, что часто используется в. газовом анализе. Можно взять пробирки, содержащие различные реактивы, и при помощи цилиндра и поршня, приводимого в движение рукой, пропускать через них газ. Подобный метод можно было’бы применить и в роботе. Правда, для робота было бы удобнее использовать самовосстанавливающиеся реактивы, что позволило бы избежать необходимости в замене пробирки после каждого опыта. Следует, однако, напомнить, что у животных нервные окончания, предназначенные для обнаружения запаха, по-видимому, быстро погибают и очень часто обновляются.
2* |
35
В Японии разработано газоулавливающее устройство «Тагучи гэс сенсор» [39], изготовленное из оксидированных металлов, таких как окись олова, окись цинка и полуторная окись железа. В этом устройстве производится очень значительное, хотя и обратимое, уменьшение электрического сопротивления при соприкосновении с газами-восстановителями: водородом, окисью углерода, метаном, пропаном, спиртом, эфирным маслом и ацетиленом.
Твердотельная технология позволила изготовить кислородный анализатор, который может применяться, например, для определения концентрации кислорода в топочных газах и, следовательно, для контроля интенсивности горения [40]. Прибор содержит стабилизированный циркониевый элемент, работающий при температуре 850° С и генерирующий напряжение, которое изменяется по логарифмическому закону в зависимости от разности между парциальными давлениями кислорода и контрольного источника. Как сообщалось, точность этого прибора ±0,1%, время срабатывания 0,2 с в диапазоне температур 10— 760° С, выходной сигнал 4—20 мА (или 1—5 В).
Для восприятия влажности применяются различные элементы, в том числе хлористо-литиевые (датчик «Данмор»), углеродные, элементы на базе полиэлектролитного сопротивления, керамические элементы, емкостные устройства [48] и элементы на базе окиси алюминия [41 ]. Все они в той или иной степени нестабильны благодаря ионному загрязнению, растворимости в воде, поляризации, химическому и механическому разрушению. Тома [421 использовал гибкую ленту, выполненную из пятислойной пленки бутирата ацетилцеллюлозы, который как стало известно, дает высокую чувствительность при химической и механической стабильности. Это химическое вещество используется в качестве элемента в среде тщательно очищенной двуокиси углерода, а для повышения чувствительности элемент подвергается воздействию водного раствора едкого натра. В результате достигаются сопротивление около 2500 Ом и работоспособность при относительной влажности 10—90% с постоянной времени свыше 100 с. При этом сопротивление почти не зависит от напряжения и температуры. Весьма вероятно, что подобные разработки можно будет использовать в робототехнике.