Большое количество объектов человек считает глазами по отдельности или разделяет их на группы. В то же время глаз человека обладает способностью к мгновенному подсчету изображений, создаваемых на сетчатке небольшим числом объектов [39, 40]. Искусственная сетчатка, наделенная такой способностью, имела бы многочисленные применения; одним из наиболее важных явилось быстрое определение количества объектов, например элементов крови, находящихся под микроскопом.
Принципиальная возможность создания такой непосредственно считающей сетчатки была продемонстрирована П. С. Вильямсом в Астоне [37]. Схема экспериментального устройства показана
на ряс. 12.3. Клетки сетчатки представлены одним рядом сер — нисто-кадмиевых фотоэлектрических элементов. Сигналы от этих элементов подаются на операционные усилители, а затем посту-
Рис. 12.3. Схема, применяемая в считающей сер чатке |
пают на выход. Число объектов, появляющихся перед линейкой элементов, определяется простыми схемами, и результат указывается прибором, шкала которого отградуирована на число объектов.
Принцип работы этого демонстрационного оборудования на самом деле весьма прост, хотя на первый взгляд кажется, что это не так. Для определения числа объектов, независимо от их размеров и положения, подсчитывается число краев объектов, появляющихся перед сетчаткой, а затем устройство автоматически делит его на 2. В искусственной сетчатке используется, таким образом, принцип обнаружения краев изображения.
Рассмотренный принцип можно распространить для использования не только в одномерном, но и в двумерном
2 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
2 |
0 |
Z |
2 |
Рис. 12.4. Пример использования «детектора краев», разработанного в Астоне |
варианте, применив для определения числа краев вдоль каждой из параллельных строк растра визуальной сцены «детектор краев», разработанный в Астоне. После этого вычисляются значения разностей, как это показано на рис. 12.4, между числами краев, появившихся перед соседними линейками, а затем вычисленные разности суммируются и делятся на 4 для получения общего числа рассматриваемых выпуклых объектов независимо от их индивидуальных размеров. Такое считающее устройство может непосредственно использоваться на промышленных складах и в магазинах, не считая уже упомянутых применений в медицине.
Наверное, следует упомянуть о том, что при использовании описанных простых считающих схем имеются определенные ограничения. С каждого конца линейка должна быть полностью укомплектована освещаемыми фотоэлементами, даже если их можно промоделировать. Соседние объекты должны или разделяться полным столбцом, или перекрываться в одном и том же столбце. Если границы двух объектов приходятся на два разных, но прилегающих столбца, то при подсчете возникает ошибка, являющаяся неким видом оптической иллюзии. Объекты не должны быть вогнутыми: при их подсчете может получиться ошибочный результат. Несмотря на недостатки данного метода, он дает хорошие результаты при реализации его на устройстве, в основе своей очень простом. Этот же метод в неизменном виде, безусловно, применим при использовании взамен дискретных элементов сканирующего устройства, например передающей телевизионной трубки.